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The forced flow of a binary gas mixture in a vertical plane-parallel differential- 
temperature channel is investigated with allowance for free convection and phase 

transitions of one of the components of the mixture at the walls of the channel. 

Vertical differential-temperature channels [i, 2] are used in studies of the diffusio- 
phoresis of aerosol particles; their heated wall serves as a vapor source, and the cold wall 

provides a surface of condensation. A gas containing aerosol particles is passed through such 
channels. Of utmost interest here from the point of view of diffusiophoresis work are forced- 

flow regimes for which the Reynolds numbers Re are smaller than the Grashof number G and its 
concentration analog Ar, i.e., under the conditions Re~G and Re~Ar. In these flow regimes, 
estimates of the terms in the equation of motion show that free convection must be taken into 

consideration, Accordingly, in the present article we give a solution for the system of hydro- 
dynamic equations of the mixture with allowance for free convection and phase transitions of 
one of the components of the mixture at the walls of the channel. The system is solved for 
the case of a vertical channel in the form of a narrow passage confined between parallel plane 

surfaces. 

In solving the problem we use the customary simplifying assumptions [3]; we also assume 
that the gas mixture in the channel is Newtonian and obeys the ideal gas laws, while the air 
(in a vapor--air mixture) behaves as a simple component. In this case the transport processes 
are described by the system of hydrodynamic equations for a binary mixture [4], which in the 
steady state without thermal diffusion, diffusion heat conduction, and energy dissipation 
through internal friction has the form 

VpV = O, (i) 

pvvc  ~ = vpOvc i ,  (2)  

pcpvvT = vkv T, (3) 

p (vv) v = --V P + V~VV + Pog (~6T + ~8c~) ?. (4) 

We use a Cartesian coordinate system with the origin situated on one of the vertical 
plane surfaces of the channel (either the hot or the cold wall), the x axis directed verti- 
cally upward (parallel to the channel axis), and the y axis directed perpendicular to those 

surfaces. 

In accordance with the investigated problem, a constant temperature and a constant con- 
centration of the lighter component, which is evaporated by the heated (hot) surface, are 
maintained on that surface. On the opposite cooled (cold) vertical plane surface of the 
channel as well, a constant but lower temperature is maintained. In this case the lighter 
component of the mixture is condensed (absorbed), and so it maintains a constant value of the 

concentration, which corresponds to the saturation vapor pressure at the temperature of the 
cooled surface. In the adopted coordinate system, therefore, the boundary conditions of the 

problem are 

at y = 0  T(x, O, z )=T(0) ,  ci(x, O, z)=c~(0), V~(x, O, z)=O,  (5) 

at y = h  T(x, h, z)=T(h),  ci(x, h, z)--ci(h), Vx(x, h, z ) = 0 .  (6) 

By the symmetry of the channel and the boundary conditions, for steady longitudinal 
(along the vertical axis of the channel) laminar forced flow (at a sufficient distance from 
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the inlet to the differential-temperature channel) all quantities (except the pressure P) 
will depend on the one coordinate y. In this case the system of equations (1)-(4) acquires 

the form 

--,9Vy=O, 
@ 

9Vy dci d pD dci 
d!/ d9 d9 

dT d dT 
pVyc v -  = -  k--, 

dy dy dy 

pV u __dVx dP , d V dV~_ -~ P0g (~18T + ~28cl). 
dg dx dg dg 

(7) 

(S) 

(9) 

(i0) 

The equations of motion in the directions of the y and z axes (which are perpendicular 
to the flow), as in [3], are disregarded, and it is assumed that 3P/3y = 0 and 3P/~z = 0. 

To further simplify the system of equations (7)-(10) we integrate the continuity and 
diffusion equations (7) and (8). After one integration of (7) we obtain 

pVy = C I, (ii) 

where C~ is a constant of integration. Integrating (8) with regard for (ii), we have 

pVuc~ : pD dcl 
dy ~ C2, (12)  

pVyc~ = 9D. dc~-~-C 3, (13) 
@ 

where C2 and Ca are constants of integration. Inasmuch as the second component of the mix- 
ture (air) is inert, C3 = O. From (13) we then find the perpendicular component of the mass- 
velocity of the mixture: 

D dc2 
Vy-- (14) 

c~ d 9 

Expression (14) coincides with the expression for the Stefan flow velocity, and so the given 
component Vy of the mass velocity of the binary gas mixture is the Stefan flow velocity. 

Bearing in mind that c~ + c2 = 1 and C3 = 0, from Eqs. (11)-(13) we obtain CI = C2 = pVy, 
so that 

gy:Cdp. (15) 

Making use of expression (ii) and the fact that C~ = C2, we rewrite Eq. (12) in the form 

cl 
c 1 @ = 0. (16)  

d9 9D pD 

E q u a t i o n  (16)  d e s c r i b e s  t h e  c o n c e n t r a t i o n  d i s t r i b u t i o n  o f  t h e  l i g h t e r  c o m p o n e n t  ( v a p o r )  i n  t h e  
channel in the y direction (i.e., over the width of the channel). From (16) we find 

pD dcl 
C1 = - -  (17) 

( c ~ -  1) dy 

Taking the values of D and p in (17) as numerically equal to the average values D and p over 
the width of the channel, after integration we obtain the value of the constant 

C1= 9 D in c1(h)--I (18) 
h cl (0) -- 1 

We i n t r o d u c e  t h e  n o t a t i o n  

In Cl (h) - -  1 
4 ,  = - C !  = c l ,  ( 0 )  - -  1 

p D  h 

(19) 
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Using the value obtained for the constant CI in expression (15), we find a new expression for 
the Stefan flow velocity or the transverse component of the mass velocity of the gas mixture: 

V v _  P D . c t ( h ) - - l  (20) 
9h l n " c l ( 0 ) - - I  " 

From (20 ) ,  a v e r a g i n g  o v e r  t he  w i d t h  o f  t he  c h a n n e l ,  we o b t a i n  an e x p r e s s i o n  f o r  the  
a v e r a g e  t r a n s v e r s e  component  o f  t he  v e l o c i t y  o f  the  gas m i x t u r e  o r  the  a v e r a g e  v a l u e  o f  the  
S t e f a n  f low v e l o c i t y :  

D cl (h) - -  1 
Vv = - ~ -  In cl (0) - -  1 (21) 

R e t u r n i n g  to  the  s y s t e m  o f  e q u a t i o n s  ( 7 ) - ( 1 0 ) ,  we t r a n s f o r m  the  o t h e r  two e q u a t i o n s  (9) 
and (i0). Using the solutions of the continuity equation (ii), we transform the convective 
heat-conduction equation (9) to the form 

dT d dT 
Clcp -- k 

dy dy dy 

Setting c_ equal to the average value of the specific heat of the mixture over the width 
of the channel ~, Cp = c%, after one integration we obtain a first-order differential equation 
describing the temperature distribution in the y direction (over the width of the channel): 

C5 dT C~p T q- O, (22) 
d v k - - k - =  

where  Cs i s  a c o n s t a n t  of  i n t e g r a t i o n .  

B e a r i n g  i n  mind t h e  s o l u t i o n  of  the  c o n t i n u i t y  e q u a t i o n  (11) and g r o u p i n g  terms in  Eq. 
(10 ) ,  we o b t a i n  

d dVx C, dVx dP 
dy Ix dy d~- -- d~- Pog (~18T 4-, ~2(~Cl), (23) 

The r e s u l t i n g  e q u a t i o n  (23 ) ,  i n  c o n t r a s t  w i t h  (10) ,  i s  a l i n e a r  d i f f e r e n t i a l  e q u a t i o n .  

We p e r f o r m  a s i n g l e  i n t e g r a t i o n  of  Eq. (23) w i t h  r e s p e c t  to  y :  

dVx _ C__ L Vx = dP y P 0 g  5 (~16T + ~,6cl) dy -+- C---L 
d R p, dx IX IX IX 

Thus, after suitable transformations and integration we obtain the simplified system of 

equations 

dcl G G 
ci + = 0, (24) 

dy oD pD 

C5 d r  C~p Y + = 0, (25) 
d R k 

dVx C1 Vx dP y Pog j*(~lST+~6c,)dv+ C--t (26) 
dy IX dx Ix IX IX 

By n u m e r i c a l  i n t e g r a t i o n  of  t h e  sy s t em o f  e q u a t i o n s  ( 2 4 ) - ( 2 6 )  i t  i s  p o s s i b l e  to  f i n d  the  
d i s t r i b u t i o n s  o f  the  c o n c e n t r a t i o n  o f  t he  l i g h t e r  component  ( v a p o r ) ,  t h e  t e m p e r a t u r e ,  and t he  
v e r t i c a l  component  of  t h e  p a r t i c l e  v e l o c i t y  o f  t he  gas m i x t u r e  i n  the  c h a n n e l  f o r  v a r i a b l e  
t r a n s f e r  c o e f f i c i e n t s  and v a r i a b l e  d e n s i t y .  

To o b t a i n  an a n a l y t i c a l  s o l u t i o n  o f  the  sy s t em o f  e q u a t i o n s  ( 2 4 ) - ( 2 6 )  s u b j e c t  to  the  
b o u n d a r y  c o n d i t i o n s  (5) and (6) we f i r s t  c o n s i d e r  the  p r o c e s s e s  o f  d i f f u s i o n  and h e a t  conduc-  
t i o n  w i t h i n  the  f ramework of  t h e i r  a p p r o x i m a t e  d e s c r i p t i o n .  

A n a l y z i n g  t h e  d i f f u s i o n _ p r o c e s s e s ,  we s e t  t he  v a l u e s  o f  p and D i n  Eq. (24) n u m e r i c a l l y  
e q u a l  t o  t he  a v e r a g e  v a l u e s  p and D o v e r  t he  w i d t h  o f  the  c h a n n e l .  Then t he  s o l u t i o n  o f  Eq. 
(24) s a t i s f y i n g  t h e  g i v e n  b o u n d a r y  c o n d i t i o n s  (5) and (6) and d e s c r i b i n g  t he  c o n c e n t r a t i o n  
d i s t r i b u t i o n  o f  t h e  l i g h t e r  component  ( v a p o r )  i n  the  c h a n n e l  i n  the  y d i r e c t i o n  i s  

cl (V) = [cl (0) - -  c 1 (h) lIexp (~by) - -  exp (~bh)] q- cl (h). (27 ) 
1 - -  exp (~h) 

Determining the expression for the average concentration c~ of the lighter component 
over the width of the channel (by averaging (27) over y) and introducing the notation 
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a = i/[i -- exp(%h)], b = --i/~h, Acl : ci(0) -- c1(h), we obtain an analytical expression for 

the deviation of the concentration of the average value ci: 

5c, (g) = Ac, [a exp (Ok) - -  b]. (28)  

N e x t  we c o n s i d e r  h e a t - c o n d u c t i o n  p r o c e s s e s ,  t n  Eq. (25)  we s e t  t h e  q u a n t i t y  k e q u a l  t o  
t h e  a v e r a g e  v a l u e  k o v e r  t h e  w i d t h  o f  the. c h a n n e l .  Then  t h e  s o l u t i o n  o f  Eq. (25)  s a t i s f y i n g  
t h e  g i v e n  b o u n d a r y  c o n d i t i o n s  (5)  and  (6)  and  d e s c r i b i n g  t h e  t e m p e r a t u r e  d i s t r i b u t i o n  i n  t h e  
c h a n n e l  i n  t h e  y d i r e c t i o n  i s  

T (g) = . [T  (0) - -  T (h)][exp (qb, g) - -  exp (r ~ T (h), (29)  
1 -- exp (~,h) 

where ~l = C,cp/k. 

Determining the expression for the average temperature over the width of the channel by 
averaging the solution (29) over y, and introducing the notation A = i/[i- exp(~lh)], B = 
--i/01h, AT = T(O) -- T(h), we find the deviation of the temperature from the average value T: 

8T (g) = AT [A exp (O,g) - -  B]. (30)  

We consider the expression (26) for the longitudinal vertical component V x of the parti- 

cle velocity and substitute into its right-hand side the analytical expressions (28) and (30) 

obtained for 6ci(y) and 6T(y). Integrating on th~ right-hand side of Eq. (26), we obtain 

dVx C, Vx= dP g pog~IAT[Aexp_(ffa,g) Bg by q--- (31) 

dg ~ dx 1* t~ L qa~ ~ 0 p, 

The general solution of Eq. (31) has the form 

g~ = dP g 9og[J, AT A exp (qS~y) By qo 
dx Ix ,u 41211 ~1, L 

x e x p ( _ _ C ! S _ ~ ) d y _ } _ C 6 ) e x p ( C 1 ; _ ~ _ )  , (32)  

where C6 is a constant of integration. 

To simplify the solution (3.2) we set the dynamic viscosity equal to the average value 
over the width of the channel, ~ = ~, and introduce the notation 

Then the solution satisfying the boundary conditions (5) and (6) of the problem takes the :form 

Vx dx P~ 
= - -  { C , %  (g--h)+ [exp{ Q h,]__li 4h(o~_C, ) • 

X [exp (~lg) -- exp (~llz)] 

_Iroxp(Cl ) [exp ('i/{) 7 h - -  exp [~_~ j ],, 

CI A') -- exp ' CI 
Q2aAcl (33)  

In analyzing and solving the equation of motion (i0) it has been assumed that the equa- 
tions of motion in the directions of the y and z axes have the form ~P/~y = O, ~P/~z = 0. In 
this case the pressure gradient in the x direction has a constant value, i.e., iP/Sx = const. 
The resulting solution (33) can be used to refine the value of the gradient and to determine 
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the pressure distribution P in the channel analytically. However, the cumbersomeness of the 

derived expressions and the simplicity of their derivation prompt their omission from the 
article. 

Thus, as a result of the investigation we have obtained analytical expressions (20) and 
(33) for both components of the mass velocity V x and Vy, along with expressions (27) and (29) 
describing the distributions of the concentration c~ and the temperature T in the channel. 

To illustrate the influence of free convection and Stefan flow on the profile of the 
longitudinal vertical component of the mass velocity Fig. I gives the results of calculations 

according to the derived expressions for a fixed wall temperature regime (temperature of the 
cold wall 27~ temperature of the hot wall 60~ and various flow regimes of the vapor--air 
mixture. Curve 1 gives the prof_ile of the dimensionless longitudinal vertical component of 
the mass velocity Vx/V x (where V x is the average value of V x in the channel) for the forced 
upward vertical flow of a vapor-air mixture when the Grashof number is equal to the Reynolds 
number, i.e., under the condition Re/G = i. Also shown in the figure for comparison is the 
P0iseuille flow profile (curve 2), again in dimensionless form. A comparison of curves i and 

2 shows that the profile of the vertical component of t~e mass velocity in the given situation 
is close to the P0iseuille form. The observed shift of the profile to the right is attribut- 
able to the influence of Stefan flow and is directed toward the cold wall of the channel at 

y = h. Curve 3 in Fig. i represents the profile of the vertical component of the mass veloc- 
ity (in dimensionless form) for Re/G = 0.i. It is evident from a comparison of curves 3 and 
2 that under these conditions there is already an appreciable departure of the vertical com- 

ponent of the mass velocity from the Poiseuille profile under the influence of free convection. 
Here the profile of the vertical component of the mass velocity has now shifted to the left 
toward the hot wall of the channel, and the influence of Stefan flow is completely suppressed 
by the influence of free convection. 

Finally, curve 4 in Fig. 1 represents the profile of the longitudinal vertical component 
of the mass velocity (also in dimensionless form) under conditions such that Re/G = 0.01. 

It is evident from a comparison of curves 4 and 2 that under these conditions the profile of 
the longitudinal vertical component differs from the Poiseuille form and near one of the walls 
of the channel there is a reverse-flow zone (i.e., motion opposite to the forced flow direc- 
tion). Here the observed distortions of the profile of the longitudinal vertical component 
of the mass velocity are associated entirely with the influence of free convection. 

Thus, in the upward flow of a binary vapor--air mixture the distorting effects of Stefan 
flow and free convection on the profile of the vertical component of the mass velocity are 
counteractive, When Re/G ~ i, the influence of free convection is absent, and the observed 
distortion (shift) of the profile is entirely attributable to the influence of Stefan flow. 
Under conditions such that Re/G < i the influence of free convection sets in, which initial- 

ly, as the value of the ratio Re/G is decreased, produces a gradual compensation of the 
Stefan flow effect, ultimately suppressing it altogether, and is then accompanied by a change 

in the entire flow profile and the onset of a reverse-flow zone. 

In conclusion we consider the inertialess motion of aerosol particles under the investi- 
gated conditions. Figure 2 shows the trajectories of the aerosol particles in dimensionless 
form (in the dimensionless variables x/l i and y/h, where I i is the limiting precipitation 
length in the i-th test and h is the distance between the vertical differential-temperature 
surfaces) when the motion of the particles is initiated directly from the hot surface of the 
channel; the curves are calculated on the basis of Eqs. (20) and (33) by integrating the equa- 
tions of motion. Curve i represents the aerosol particle trajectory in the investigated 
channel for flow regimes and wall temperature regimes corresponding to conditions such that 
Re/G ~ i, curve 2 represents the particle trajectory for Re/G ~ 0.i, and curve 3 for Re/G ~ 
0.01. 

It is evident from the curves that for flow regimes and wall temperature regimes corre- 

sponding to the conditions Re/G ~ 0.01 considerable distortion is observed in the trajectory 
of the aerosol particles as a result of free convection. This fact must be taken into ac- 
count in measurements of the diffusiophoresis and thermophoresis rates from the critical 
mass flow of gas through a duct or from the characteristic time constant T. The correct 
values of the diffusiophoresis rate in this case correspond, not to zero passage of aerosol 
particles through the channel, but to ~36% passage. 
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Fig. i. Profile of the longitudinal vertical component of the 
mass velocity in dimensionless form for a cold-wall temperature 
of 27~ and a hot-wall temperature of 60~ I) Re/G = i; 2) 
Poiseuille flow profile; 3) Re/G = 0.1; 4) Re/G = 0.01. 

Fig. 2. Trajectories of aerosol particles. I) Re/G = !; 2) Re/ 
G = 0.i; 3) Re/G = 0.01. 

NOTATION 

c i = pi/p, concentration of i-th component of gas mixture, i = 1 for the lighter compon- 
ent, and i = 2 for the heavier component of the mixture; p = PI + p2, density of binary gas 
mixture; p~, P2, densities of first and second components of mixture; po, density of mixture 
at average values of the temperature and concentration; T, temperature; v, average mass- 
velocity vector of mixture at a given point of space; Vx, component of average mass-velocity 

yector along x axis; _Vx' average value of V x in channel; Vy, component of average mass-velocity 

vector along y axis;__Vy, average value of Vy in channel; D, interdiffusion coefficient_ of 
mixture components; D, average value of D; k, thermal conductivity of mixture; k, average 
value of k; ~, dynamic viscosity of mixture; ~, average value of ~; Cp, specific heat of mix- 
ture at constant pressure; Cp, average value of Cp; P, pressure relative to hydrostatic value 
corresponding to density po; g, acceleration of gravity; y, unit vector in upward vertical 
direction; 6T, deviation from average temperature; 6ci, deviation from average concentration; 
BI, thermal expansion coefficient of mixture; B2 = i/po(~P/SCl)T.p expresses the density of 
the mixture as a function of the concentration ci of the lighter component; CI, C2, C3, C4, Cs, 
C6, constants of integration; ~, function defined in (19); ~i = C~-cp/~, A = i/[I -- exp(~h)], 
B = --I/(~lh), AT = T(0) -- T(h); h, width of channel (distance between plane vertical dif- 
ferent!al-temperatur ! surfaces);_ a = i/[i -- exp(~h)], b = --i/(~h), Acl _= ci(0) -- c1(h), QI = 

, sA g~po/~, Q2 = g~2po/D, Re = Vxhpo/~ , G = gB~h3ATp~/D 2 Ar = g~2h clp~/~ 2. 
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